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Envelopes and Indifference

1 The Problem

Consider this situation: Here are two envelopes. You have one of them. Each
envelope contains some quantity of money, which can be of any positive real
magnitude. One contains twice the amount of money that the other contains,
but you do not know which one. You can keep the money in your envelope,
whose numerical value you do not know at this stage, or you can exchange
envelopes and have the money in the other. You wish to maximise your
money. What should you do?1

Here are three forms of reasoning about this situation, which we shall call
Forms 1, 2 and 3, respectively.

Form 1 Let n be the minimum of the quantities in the two envelopes. Then
there are two possibilities, which we may depict as follows:

Possibility 1 Possibility 2
Your Envelope n 2n
Other Envelope 2n n

By the principle of indifference, the probability of each possibility is 1
2
.

The expected value of keeping your envelope is

1

2
× 2n +

1

2
× n =

3

2
n

The expected value of switching is

1

2
× n +

1

2
× 2n =

3

2
n

Conclusion: switching is a matter of indifference.2

1We bracket, here, considerations of diminishing returns (you wish to truly maximise
your monetary return), and the discrete nature of currency. Say, for the purposes of the
discussion, the quantity is a cheque made out to you for some positive real quantity, which
your bank will deposit into your account.

2would baulk at calling the quantities computed expectations, since they themselves
contain a (random) variable. This is simply a matter of nomenclature. However, we will
consider the status of the variables in these expressions in Section 4, below.
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Form 2 Let x be the amount of money in your envelope. Then there are
two possibilities, which we may depict as follows:

Possibility 1 Possibility 2
Your Envelope x x
Other Envelope 2x x/2

By the principle of indifference, the probability of each possibility is 1
2
.

The expected value of keeping your envelope is

1

2
× x +

1

2
× x = x

The expected value of switching is

1

2
× 2x +

1

2
× x

2
=

5

4
x

Conclusion: switch.

Form 3 Let y be the amount of money in the other envelope. Then there
are two possibilities, which we may depict as follows:

Possibility 1 Possibility 2
Your Envelope 2y y/2
Other Envelope y y

By the principle of indifference, the probability of each possibility is 1
2
.

The expected value of switching is

1

2
× y +

1

2
× y = y

The expected value of keeping is

1

2
× 2y +

1

2
× y

2
=

5

4
y

Conclusions: keep.

Prima facie, Forms 1, 2 and 3 seem equally good as pieces of reasoning.
Yet it seems clear that they cannot all be right. What should we say?
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2 The Solution

In fact, all three answers give you the right solution, in three different cir-
cumstances. The relevant reasoning determining what you ought to do to
maximise your outcome is under-determined by the original description of
the situation. The correct way to reason, in the sense of maximising your
return given the possibilities — which, after all, is the aim of each kind of
reasoning — depends on the process by which the money ends up in the en-
velopes. For each form of reasoning there are mechanisms such that, if that
mechanism was employed, the reasoning delivers the correct answer. Here
are three examples:

Mechanism 1 A number, n, is chosen in any way one likes. One of the
two envelopes is chosen by the toss of a fair coin, and n is put in that
envelope; 2n is put in the other.

Mechanism 2 A number, x, is chosen in any way one likes. That is put
in your envelope. Either 2x or x/2 is then put in the other envelope,
depending on the toss of a fair coin.

Mechanism 3 A number, y, is chosen in any way one likes. This is put
in the other envelope. Either 2y or y/2 is then put in your envelope
depending on the toss of a fair coin.

That the three different forms of reasoning are correct for each of the
corresponding mechanism is obvious once one has seen the three possibili-
ties. For example, for Mechanism 1, let us suppose that the number n is
chosen with a probability measure P . Since we have not specified any range
we from which the amount is chosen, the most we can say is that the prob-
ability measure defines, for a range of measurable sets S of quantities, the
probability P (n ∈ S) — the probability that the number n is in the set
S. So, P (n ∈ [0, 1]) is the probability that the number n is between zero
and one, inclusive).3 Then, since the quantities in the two envelopes are n
and 2n, decided at the toss of a fair coin, the probability that the quantity

3We need this delicacy when considering the probabilities, since we cannot in every
case define the probability measure on the choice of n by considering the probabilities
for the atomic events of each particular choice of n. For example, if the quantity n is
chosen uniformly over [0, 1], then P (n = r) is zero for each r ∈ [0, 1]. Yet the measure is
non-trivial: for example, P (n ∈ [0, 1

3 ]) = 1
3 .
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in my envelope is in a set S is 1
2
P (n ∈ S) + 1

2
P (2n ∈ S), since there are

two ways the content of my envelope could be in the set S. One way (with
probability 1

2
) is that my the amount in my envelope is, n, and the proba-

bility that n is in S is P (n ∈ S). The other way (also with probability 1
2
)

is that the quantity in my envelope is 2n, and the probability that this is
in S is P (2n ∈ S) = P (n ∈ S/2), where S/2 is the set of all members of S
divided by 2. The probability that the quantity in your envelope is in set S
is 1

2
P (2n ∈ S) + 1

2
P (n ∈ S), which is the same quantity, so indifference in

this is warranted, as the probabilities are identical.
On the other hand, given Mechanism 2, if the number x (the quantity in

your envelope) is chosen with measure P ′ (so P ′(x ∈ S) is the probability that
x is in the given set S), then the probability that the quantity in your envelope
is in S is simply P ′(x ∈ S), whereas the probability that the quantity in my
envelope is in that same set is 1

2
P ′(2x ∈ S) + 1

2
P ′(x

2
∈ S), which may diverge

significantly from P ′(x ∈ S). If P ′ is the uniform distribution on [0, 1], than
P ′(x ∈ [0, 1]) = 1. On the other hand, 1

2
P ′(2x ∈ [0, 1]) + 1

2
P ′(x

2
∈ [0, 1]) =

1
2
× 1

2
+ 1

2
× 1 = 3

4
. The reasoning in the case of Mechanism 3 is similar.

We have specified the state spaces sufficiently to determine enough of
the probability measure on each space, in such a way that the probabalistic
reasoning is valid. However, if the reader has any doubt about this, intuitions
about the scenarios can checked by a series of trials. For example, a sequence
of trials is generated employing Mechanism 1. Whether you adopt a policy
of keeping or switching or doing either at random, makes no difference in the
long run. Similarly, a sequence of trials is generated employing Mechanism 2:
Adopting the policy of switching comes out 5/4 ahead of the policy of keeping
in the long term (and changing at random comes out 9/8 ahead). The case
is similar for Mechanism 3.

The two envelope paradox is well known.4 It comes in different versions.
The paradigm version is produced by giving reasoning of Form 2 in a context
where Mechanism 1 is deployed. This, of course, gives the wrong results. We
have just solved this paradox.

4The paradox first appeared in the philosophical literature in Cargyle (1992). It con-
tinues to generate a substantial literature. See, e.g., Jackson, Menzies and Oppy (1994),
Broome (1995), Clark and Shackel (2000), Horgan (2000), Chase (2002). It should be
noted that much of the literature appeals to the fact that money is discrete with a mini-
mum or maximum. As is shown by the way that we have set things up, this does not get
to the heart of the problem.
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3 Bertrand’s Paradox

There is a paradox concerning the principle of indifference usually called
Bertrand’s Paradox.5 This can be put in many well-known ways. Here is
one. A train leaves at noon to travel a distance of 300km. It travels at a
constant speed of between 100km/h and 300km/h. What is the probability
that it arrives before 2pm? We may reason in the following two ways.

1. If the train arrives before 2pm, its velocity must be greater than or equal
to 150km/h. Given the range of possible velocities, by the principle of
indifference, the probability of this is 3

4
. Hence, the probability is 3

4
.

2. The train must arrive between 1pm and 3pm. 2pm is half way between
these two. By the principle of indifference, the train is as likely to
arrive before as after. So the probability is 1

2
.

The two applications of the principle of indifference seem equally correct, but
they result in inconsistent probabilities.

A standard solution to the paradox is to point out that the correct appli-
cation of the principle of indifference depends upon the mechanism by which
the velocity of the train is determined. If, for example, the velocity is de-
termined by setting it to a number between 100 and 300, chosen at random,
then reasoning 1 is correct. Suppose, on the other hand, that the velocity
is chosen as follows. Choose a number of minutes, n, between 0 and 120, at
random. Set the speed of the train to be 300/(1 + n/60) (distance/time).
Then reasoning 2 is correct. In case it is not a priori clear that these are the
right ways to reason in the contexts, the matter can be demonstrated by a
sequence of appropriately designed trials.

As should now be clear, the paradigm two envelope paradox can be seen
as a version of Bertrand’s paradox. Perhaps what has prevented it from
being seen as such is simply the fact that only one of the ways of applying
the principle of indifference is standardly given.

4 Decision Theory and Designation

So far so good. But where, exactly—it may fairly be asked—does the rea-
soning in the paradigm two envelope paradox go wrong? The answer is that

5See, e.g., Kneale (1952).
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it depends. It depends on how we conceptualise the designators employed.
The reasoning proceeds as follows:

Let x be the amount of money in your envelope; then there are
two possibilities, 〈x, 2x〉 or 〈x, x/2〉 . . .

Ask whether ‘x’ is a rigid designator or simply a definite description. Sup-
pose, first, that it is a rigid designator—say it denotes $10. Then in the
second possibility, that which arises when the envelopes are switched, the
amount of money in your envelope is precisely not x, that is, $10. (It is
either $5 or $20.) The values involved in the computations of the various
expectations (particularly, the second summands) are therefore incorrect.

Suppose, instead that ‘x’ as it occurs in our reasoning is a definite de-
scription, such as ‘the amount of money in your envelope,’ and not a rigid
designator. Then it certainly refers to the amount of money in your envelope
in possibility 2. But now it refers to a different quantity than it referred to in
possibility 1. To go on and compare the values of the expectations computed
in this way is therefore a nonsense. This would be like reasoning as follows.
The number of sons of the king (in some context) is 4; the number of daugh-
ters of the king (in some other context) is 3; hence the king has more sons
than daughters. As is clear, both of the kings in question may have more
daughters than sons.

Interpreted in one way, then, the reasoning is unsound; interpreted in
the other way it is invalid. Similar considerations hold if one applies any of
the methods for computing expectations together with a non-corresponding
mechanism. To see how the mismatch occurs, consider a circumstance well-
suited to the second form of reasoning: the mechanism we have called “mech-
anism 2.” In this case, the term ‘x’ may rigidly refer to the amount of money
in your envelope, or it may be a definite description abbreviating ‘the num-
ber in your envelope.’ In either case, the reasoning of form 2 is appropriate
because the two possibilities countenanced in that form of reasoning (〈x, 2x〉
and 〈x, x/2〉) match up precisely with the different outcomes of Mechanism 2,
given that interpretation of the term ‘x.’ This cannot be said of Mechanism 1
or Mechanism 3.

The moral of the story is simple: in a computation of expectation, the
designation of a variable must refer to the right quantity, and that reference
must not vary as the reasoning encompasses different possibilities.
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5 Opening the Envelope

There are, of course, other versions of the two envelope paradox. In another,
one opens the envelope before deciding whether to exchange. Thus, let us
suppose again that the money is distributed via Mechanism 1. But suppose
that this time we open the envelope and find, say, $10. The expectation
of keeping is therefore $10. The contents of the other envelope are either
$5 or $20. So the expectation of switching is $12.50. So one should switch.
This seems equally paradoxical: the precise amount of money in the envelope
seems to provide no significant new information. What is to be said about
this? (Note that, in this case, the computation of expectation does not
employ variables at all, just numerals—rigid designators.)

Note, for a start, that, relative to certain items of background information,
new information provided by opening the envelope can make it rational to
switch. Thus, suppose that you know that the minimum amount, n, is an
odd integer. Then if you open the envelope and find, e.g., $5, you should
change; whereas if you find $10, you should not. If you find $5, then all the
possibilities other than 〈5, 2.5〉 and 〈5, 10〉 have zero probability. And if you
know that n is an odd integer, the first of these also has zero probability. If
one computes the expectation of the two outcomes using this information,
the expectation of keeping the envelope is 5, and that of switching is 10. So
one should switch.

In general, if one knows a prior probability distribution for the value of
n, or at least enough about it, then, by employing Bayes’ Law

P (h/e) =
P (e/h)× P (e)

P (h)

one can compute a posterior probability distribution, given the evidence pro-
vided by opening the envelope. The posterior probability distribution thus
generated provides the basis for the maximum-expectation computation.

However, if one has no such information, then there is no way one can
compute posterior probabilities, and so use these in a computation of expec-
tation. Thus, suppose one knows nothing more than that Mechanism 1 was
deployed. One does not know the prior probability distribution, only the
following constraint on it: for any n, the probabilities of 〈n, 2n〉 and 〈2n, n〉
are identical (and all other pairs have zero probability). This is sufficient
information to compute prior expectations as a function of the value n. Now
if one opens the envelope and discovers, say, $10, the only two possibilities
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left with non-zero probability are 〈10, 5〉 and 〈10, 20〉. But since one has no
information about the prior probabilities of these two possibilities, one can-
not compute their posterior probabilities. In particular, one cannot argue
that, since there are two possibilities left, each has probability 1

2
. Thus, for

example, if the prior probability distribution was such that 〈10, 5〉 and 〈5, 10〉
each had probability 1/2, whilst everything else had probability 0 (which is
consistent with our information), then the posterior probabilities of these
two options are 1 and 0, respectively. On the other hand, if it was such that
〈10, 20〉 and 〈20, 10〉 each had probability 1/2, whilst everything else had
probability 0, then the posterior probabilities of these two options are 0 and
1, respectively. To claim that the relevant posterior probabilities are a half
each is, therefore, fallacious.

6 Probabilistic Ignorance

In the situation we have just considered, we have insufficient information to
compute the relevant expectations. The same situation arises, even before
opening the envelope, if we have no information concerning the mechanism
for distributing the money between envelopes. In this case, the information
given so far in the characterisation of scenario seems to give us no good
reason to switch. But how can one justify this view? The answer depends
on how one conceptualises rational choice in such situations.

One possibility is to suppose that probability considerations are still rel-
evant to choice. The probabilities in question cannot be objective, of course;
not enough about such probabilities is known. So they must be subjective.
Now, the prior probability distributions in question are over an infinite space.
Since there is no uniform distribution over all the possibilities, there is no
one distribution that recommends itself. There are infinitely many equally
good distributions consistent with our knowledge. We may nullify any ar-
gument to the effect that one should switch or keep based on a probability
distribution by pointing out that there are equally good distributions that
recommend the opposite. We have already seen this in the case in which we
open the envelope. In the case where we do not know the mechanism, all
we know about the prior probability distribution is that all the possibilities
with non-zero probability are of the form 〈q1, q2〉, where q1 = 2q2, or 2q1 = q2.
We may therefore nullify any argument to the effect that we ought to keep,
based on a certain probability distribution, P , by pointing to its dual, P ′,
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obtained by swapping the values of q1 and q2. This will recommend the op-
posite choice. There is therefore nothing to break the symmetry, and so to
give ground for anything other than indifference.6

The other possibility, one might suppose, is to abandon appeal to proba-
bility altogether, in favour of some other principle of decision making. But in
this case, there also seems to be nothing to break symmetry in the epistemic
situation at hand. Moreover, if any argument for switching or keeping is
given, this can again be neutralised by pointing out that there are circum-
stances (mechanisms, distributions), in which the argument will give us the
wrong answer. Again, anything except indifference has no rational ground.

In either case, then, as each case has been sketched, you have no reason
to be anything other than indifferent: arguments attempting to justify some
difference between switching and keeping get no grip. Does it follow that
you should be indifferrent? Of course not: we have not ruled out any of
the infinity of other considerations that might incline you to one envelope
rather than another. (One envelope is red and the other is blue and you
have promised to accept no blue gifts today. You like the shape of one of the
envelopes and it would be a good addition to your collection. And so on.)
As the case has been described, we have not ruled out all of the possible
normative considerations that might apply in the circumstance before you.
But when it comes to evaluating those, the probabilities we have discussed
will not help. They give you no insight into what to do other than to be
indifferent between switching and keeping.7
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